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Abstract: Increased deposition of construction waste in the environment and the continued depletion of the natural 

resources for construction raw material has led to the growing research on recycled aggregate concrete to find out 

and prove whether it can be as durable as natural aggregate concrete. Durability of this type of concrete is of great 

concern especially in harsh environments such as seawater environments, areas exposed to numerous freezing and 

thawing cycles and areas containing chemicals like Sulphates or Chlorides This paper presents a Multiscale 

Stochastic Finite Element Method that incorporates our newly developed digital image kernel for studying 

chloride diffusion in concrete and how it affects the durability of recycled aggregate concrete. The major focus of 

this study is to show the feasibility of our new digital image kernel, compare its development and application with 

other five selected kernels from literature and to highlight the advantages and disadvantages of this method. 
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I.   INTRODUCTION 

     The massive construction that has taken place around the world over the past years has led to generation of a great 

amount of construction waste, depletion of the natural earth for raw materials and a high cost of construction. Taking 

Taiwan as an example, it has been reported that they are struggling with a shortage of natural sand and gravel for concrete 

production. Fortunately, the use of Recycled Concrete Aggregate (RCA) presents a possible method to reduce the 

consumption of natural resources [1].  Recycled Aggregate Concrete (RAC) is not yet widely used because there still 

exists concern about its durability aspects. Chloride ions are one of the major factors that affect the durability of 

reinforced concrete. This is so because they have the ability to induce steel corrosion and concrete cover cracking [2]. 

Therefore, determining the chloride diffusivity of concrete is paramount however it is also quite difficult because it is 

influenced by many parameters such as the interfacial transition zone (ITZ) and the microstructure of the concrete 

(porosity and pore structure). These properties are present in RAC in a more complicated fashion and thus greatly 

influence the quality of RAC because they increase its susceptibility to diffusion of chloride ions [3].  

Tam et al. [4] found that the microstructure of RAC was much more complicated than that of the conventional concrete 

because it possessed two ITZs, one is between the RCA and new mortar matrix, and the other is between the RCA and the 

old mortar attached (old ITZ). Additionally, Poon et al. [5] using a scanning electron microscope (SEM) revealed that the 

ITZ of RAC consisted mainly of loose and porous hydrates whereas the aggregate–cement matrix interfacial zone of 

conventional concrete consisted mainly of dense hydrates. Past researchers have proved that the absorption rates of 

recycled aggregate are higher compared to that of natural aggregate [6-7]. Kou et al [8] summarized that the chloride 

diffusion of RAC was 1.53 times more than that for NAC. This literature review, shows that chloride ion diffusion in 

RAC is greatly influenced by the uncertainty of its microstructure.  
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Additionally, the past two decades have proved the multiscale stochastic finite element method (MsSFEM) to be a very 

effective tool, because it takes into account material heterogeneity and material properties across different scales. From 

this we can obtain values that are near to the real situation as much as possible. Numerous research on MsSFEM has been 

carried out, of which only a few are employed in this paper including; homogenization theory [9,10], and multi-scale 

method [11-13] and stochastic analysis [14-16]. To use these multi-scale numerical model one of the relevant parts of 

stochastic processes is the Karhunen-Loeve (KL) expansion, which is a widely used method. The KL expansion can be 

broken down according to the following formula: 
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Wherein, y, represents the micro-scale and φ is a random variable of the H arbitrary random function, μ is the average of 

the random function H, λi and γi are the eigenvalues and eigenvectors of the eigenvalue problem as shown below. 
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In addition, Ψi represents the standard definite polynomial variables. 

     In most of the literature, there are two major ways to start solving the Karhunen-Loeve expansion which are the 

mathematical method and the numerical method.  

In the mathematical method, a standard kernel is selected then according to the autoregression eigenanalysis of a random 

value projected onto the covariance we use mathematical expressions to obtain eigenvalues and eigenvectors. This method 

is very taxing for many non-mathematical staff in the engineering field. The Markov kernel is set here as an example, then 

mathematical methods are used for solving integral equation eigenvalue problem. The Markov kernel can be written as 
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Suppose the random process is defined in one dimension domain, from -a to a, the differential equations can be written as 
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Where c = 1 / b, decomposing the formula into two parts, -a to x and x to a. With the conduction of two simultaneous 

derivations of x, we obtain the following formula 
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In the numerical method, the eigenvalue problem, through certain basis functions, is converted to a matrix equation in 

order to solve the eigenvectors and eigenvalues of the covariance function.  We use a basis function hi(x) and make it a 

complete series of equations Hilbert space. The characteristic equation can be approximated to 
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Substituting to the original integral equation Eq. (5), the error εN can be written as 
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This error must be orthogonal with this approximation space, which can be written as 
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We express it in the form of a matrix 
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Solving the eigenvalue problem Eq. (10) and we obtain eigenvalues λ and eigenvectors di
j
, this eigenvectors cannot be 

used directly; it must be substituted back to Eq. (7) which finally leads to the mathematical expression of eigenvectors. 

In this paper we focus on the use of digital image processing (DIP) techniques to develop a new digital image kernel 

(DIK). We do this by using pixels of the microscopic image of our RAC and inserting them into our kernel equation. This 

method skips the complex processes experienced in the previously described methods. Our new method is quite simple 

and therefore convenient for non-engineering staff because i we use the pixels of the image directly onto the kernel to 

obtain useful results. 

The main objective of this paper is to explore the MsSFEM combined with this digital image kernel, the feasibility in the 

application of the DIK and the advantages and disadvantages of the development and implementation of digital image 

kernel in MsSFEM for the study of chloride diffusion in RAC.  
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II.   METHODOLOGY 

A. Eigenanalysis of AR (1) process: 

    Signal models including autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) 

types are often used to mathematically describe random processes and information sources. In particular, the first-order 

AR model, AR (1), which is a first approximation to many natural signals, is used here. It has been successfully employed 

in the modeling of digital images which is why we chose to use it here. Generation of the AR (1) signal is begins with the 

first-order regression formula written as  

)1()()( 0  nnn     (11) 

Wherein, ξ0(n) is a random series possessing zero-mean standard deviation, with real numbers ranging from -1 <ρ <1. The 

variance of ξ(n) is given as follows 

2

2

-1

1


      (12) 

Covariance series of ξ(n) is 
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The size of the covariance matrix Rξ  is N × N, which must satisfy Eigenequation 
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     The steps involved in this paper to solve the intergral equation of the eigenvalur problem are based on [17] by Torun 

and Akansu. Their method followed three basic steps which we implemented in our study. Firstly, the statistical 

measurement of the random vector process was first carried out using MATLAB software in order to obtain the 

covariance matrix. Then, the eigenvectors and eigenvalues for the given covariance matrix are calculated. Finally, 

incoming random signal vector is mapped to the eigenspace (subspace) by using the pre-calculated eigenmatrix for the 

given covariance matrix. Details of this are explained further below: 

A microscope linked to a Nikon Coolpix 990 digital camera is used to obtain high quality images. Many photos of the 

RAC sample were taken to obtain statistical sample data. We then employed the MATLAB software for image reading 

and to convert it to a gray scale image of which figure 1 is an example. From here, we are able to extract the pixel gray 

matrix which involves the information used in the digital image Covariance Kernel. 

 

Fig. 1 One of the digital images of the RAC sample 
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B. Covariance matrix calculation: 

     The grayscale image pixel matrix of the RAC sample is extracted from the picture using MATLAB software. An 

appropriate matrix size 800 × 800 was chosen and according to the following theory, we formulate covariance 

calculations: 

A set of linearly independent orthogonal discrete random series Θ numbered n , in the interval    1 ≤ i, j, k ≤ N satisfies the 

orthogonality of discrete Fourier transform and likewise by forward-change operation we map the orthogonality of the 

matrix to the Orthogonal Space. Covariance matrix and variance array are defined as follows: 
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From the covariance matrix above, the eigenvalue equation can be written as  

ΦCΦ     (17) 

Thus we can directly obtain the eigenvalues and eigenvectors.  

Since the size of eigenvalues and eigenvectors is taken from the number of pixels we do not know the mathematical 

expression of eigenvectors, but the interval between pixels is very small, and the result is almost continuous. If one needs 

to calculate values between pixels, the interpolation can be used, even without interpolation and instead using 

approximate solutions directly on either side, the error will be very small, which is within the allowable range. This shows 

that this method step is very simple and straightforward.  The value of approximation error in Monte-Carlo expansion is 

as follows 
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Where num is the number of selected Carlo expansion series. 

C. Multiscale finite element analysis of chloride ion diffusion in RAC: 

     In this study, the aggregates were generally considered to be impermeable, the mortar heterogeneous and the fine 

aggregates, voids, and cracks were assumed to be mixed up with the cement paste establishing the matrix phase. 

Microscopic uncertainties of both the old and new ITZ were accounted for thus; the homogenized diffusion coefficient of 

ITZ had to be computed through stochastic process while the diffusivity of the mortar matrix was attained by 

homogenization. Based on Zheng and Zhou’s [18] investigation, the expression of the chloride diffusion coefficient D 

takes the form as 
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Where Vp is the overall porosity, Dp is the is the effective diffusivity and n is the porosity of the concrete. 

The chloride diffusion coefficient tensor can be defined as  

)()( yDxD 
   (20) 

Wherein, x is coarse scale coordinates, y coordinates for the thin gauge, the relationship is x = y / β. 

Chloride diffusion equation can be written as 

   xQD        ,0
   (21) 

The boundary condition is given as   
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D. Variational Formulation for Multiscale methods: 
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And a following linear form  
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The variational statement equivalent to the chloride diffusion problem is obtained by finding 


 which fulfills the 

following equation: 
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The above formula can be decomposed into 
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Which leads to the following expressions 
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Formula (34) can therefore be expressed as 
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This equation itself is the weak form of random variational problems which can be solved by spectral stochastic finite 

element method proposed in the next unit, with a solution of corresponding chloride concentration values ζ. Substituting 

to formula (35) we can obtain the available chlorine ion diffusion coefficient 
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E. Spectral Stochastic Finite Element Method: 

In order to solve the formula (28), we require the spectral stochastic finite element method, therefore, a brief introduction 

to it is given below. Here, the chloride ion diffusion coefficient is defined as a random parameter, which can be written as 

0
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Where H (y, φ) is defined in (1), and by implementing formula (30) into equation (27) can we obtain 

Using the theory that error is orthogonal to the approximate space, then 
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Wherein 
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Here 
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Whereby M is the order of homogeneous chaos expansions while P is the number of polynomial chaos expansions. 

F. numerical experiments: 

In this section, we employed 5 five general kernel from literature to make comparison with our new kernel. Table 1 is a 

summary of all the kernels used. 

Table 1 Equations Formulation for different Kernels 

b Kernel Name Equations Formulation 

1 Exponential Covariance Kernel e
-a|x-x’| 

2 Triangular Covariance Kernel  1-a|x-x’| 

3 Modified Exponential Covariance Kernel e
-a|x-x’|

(1-a|x-x’|) 

4 Nataf Uniform Covariance Kernel 2sin(π/6×e
- a|x-x’|

) 

5 Nataf Step Covariance Kernel 2sin(π/2×e
- a|x-x’|

) 

6 Digital Image Covariance Kernel NA 

Feasibility Analysis : 

 

 

     

                                                                                                           

 

Fig. 3 The 4-term approximation for the Exponential Covariance Kernel: (a) Eigenfunctions; (b) Relative error surface; (c) 

Covariance surface; (d) Exact covariance surface. 

Fig. 2 The binary image of the 

Exponential Covariance Kernel 
(a) 

(d) (c) (b) 
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Fig. 5 The 4-term approximation for the triangular covariance kernel: 

(a) Eigenfunctions; (b) Relative error surface; (c) Covariance surface; (d) Exact covariance surface 

 
 

 

 

 

 

 

 

Fig. 7 The 4-term approximation for the Modified Exponential Covariance Kernel: 

(a) Eigenfunctions; (b) Relative error surface; (c) Covariance surface; (d) Exact covariance surface 

 

 

(c) (b) 

Fig. 4 The binary image of the 

triangular covariance kernel 
(a) 

(d) (c) (b) 

Fig 6 The binary image of the Modified 

Exponential Covariance Kernel 

 

Fig 8 The binary image of the 

Nataf Uniform Covariance Kernel 

 

(a) 

(d) 

(a) 
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Figure 9 The 4-term approximation for the Nataf Uniform Covariance Kernel: 

(a) Eigenfunctions; (b) Relative error surface; (c) Covariance surface; (d) Exact covariance surface 

                               

 

 

 

 

 

 

 

 

Fig. 11 The 4-term approximation for the Nataf Step Covariance Kernel: 

(a) Eigenfunctions; (b) Relative error surface; (c) Covariance surface; (d) Exact covariance surface 

                        

 

    

       

Fig.13 The 4-term approximation for the Digital Image Covariance Kernel: 

(a) Eigenfunctions; (b) Relative error surface; (c) Covariance surface; (d) Exact covariance surface 

(b) 
(c) 

(d) 

(b) (c) (d) 

Fig. 10 The binary image of the 

Nataf Step Covariance Kernel 

 

Fig. 12 The binary image of the 

Digital Image Covariance Kernel 

 

(a) 

(d) (c) 
(b) 

(a) 
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Accuracy analysis:  

In this section, we will compare the maximum error, the average error, computational time and memory of each kernel. 

Table 2. Comparison of the maximum error 

 Kernel Name 4
th

 term Approximation 

1 Exponential covariance kernel 0.1117 

2 Triangular covariance kernel 0.1110 

3 Modified exponential covariance kernel 0.0017 

4 Nataf uniform covariance kernel 0.1021 

5 Nataf step covariance kernel 0.0060 

6 Digital image covariance kernel 0.000005 

Table 3. Comparison of average error 

 Kernel Name 4
th

 term Approximation 

1 Exponential covariance kernel 0.0129 

2 Triangular covariance kernel 0.0130 

3 Modified exponential covariance kernel 0.0002 

4 Nataf uniform covariance kernel 0.0118 

5 Nataf step covariance kernel 0.0008 

6 Digital image covariance kernel 0.0000004 

Table 4. Comparison of computer run time (unit: seconds) 

 Kernel Name 6
th

 term Approximation 

1 Exponential covariance kernel 1.3166 

2 Triangular covariance kernel 1.0228 

3 Modified exponential covariance kernel 1.0460 

4 Nataf uniform covariance kernel 1.0391 

5 Nataf step covariance kernel 1.0370 

6 Digital image covariance kernel 0.9806 

Table 5. Comparison of computational memory (Unit: MB) 

 Kernel Name 6
th

 term Approximation 

1 Exponential covariance kernel 2610 

2 Triangular covariance kernel 2444 

3 Modified exponential covariance kernel 2447 

4 Nataf uniform covariance kernel 2452 

5 Nataf step covariance kernel 2466 

6 Digital image covariance kernel 2461 

Table 2-5 shows that digital image kernel is much better than the other kernels in in accuracy and efficiency. 

III.   CONCLUSION 

Recycled Aggregate concrete has shown to have a very varied microstructure which is why we employ both digital image 

processing techniques and the Multiscale Stochastic Finite Element Method. In this paper, digital image kernel method 

has been successfully applied to the multiscale stochastic finite element analysis of chloride diffusion in recycled 

aggregate concrete. In both its derivation and application, digital image kernel has shown very attractive properties. From 

the results we can summarize that, the proposed DIK has proven to be feasible, likewise, the digital image kernel has 

shown numerous advantageous properties over other selected kernels that were used for this paper including: much 
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simpler to derive, more accurate, more pervasive, requires shorter machine running time and less computer memory. The 

method is also very straight forward because it does not require complex formulations as used by other kernels. The 

advantages of the proposed kernel prove it to be a more than suitable kernel for the accurate analysis of chloride diffusion 

in concrete structures.  
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